Functional characterization of human methylenetetrahydrofolate reductase in Saccharomyces cerevisiae.
نویسندگان
چکیده
Human methylenetetrahydrofolate reductase (MTHFR, EC 1.5.1.20) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. 5-Methyltetrahydrofolate is a major methyl donor in the remethylation of homocysteine to methionine. Impaired MTHFR can cause high levels of homocysteine in plasma, which is an independent risk factor for vascular disease and neural tube defects. We have functionally characterized wild-type and several mutant alleles of human MTHFR in yeast, Saccharomyces cerevisiae. We have shown that yeast MET11 is a functional homologue of human MTHFR. Expression of the human MTHFR cDNA in a yeast strain deleted for MET11 can restore the strain's MTHFR activity in vitro and complement its methionine auxotrophic phenotype in vivo. To understand the domain structure of human MTHFR, we have truncated the C terminus (50%) of the protein and demonstrated that expressing an N-terminal human MTHFR in met11(-) yeast cells rescues the growth phenotype, indicating that this region contains the catalytic domain of the enzyme. However, the truncation leads to the reduced protein levels, suggesting that the C terminus may be important for protein stabilization. We have also functionally characterized four missense mutations identified from patients with severe MTHFR deficiency and two common missense polymorphisms found at high frequency in the general population. Three of the four missense mutations are unable to complement the auxotrophic phenotype of met11(-) yeast cells and show less than 7% enzyme activity of the wild type in vitro. Both of the two common polymorphisms are able to complement the growth phenotype, although one exhibited thermolabile enzyme activity in vitro. These results shall be useful for the functional characterization of MTHFR mutations and analysis structure/function relationship of the enzyme.
منابع مشابه
Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملCharacterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کاملIdentification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae.
The so-called thioredoxin system, thioredoxin (Trx), thioredoxin reductase (Trr), and NADPH, acts as a disulfide reductase system and can protect cells against oxidative stress. In Saccharomyces cerevisiae, two thioredoxins (Trx1 and Trx2) and one thioredoxin reductase (Trr1) have been characterized, all of them located in the cytoplasm. We have identified and characterized a novel thioredoxin ...
متن کاملCharacterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture
Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...
متن کاملCharacterization of Encapsulated Berberine in Yeast Cells of Saccharomyces cerevisiae
Berberine was loaded in yeast cells of Saccharomyces cerevisiaeas a novel pharmaceutical carrier to improve the treatment ofmany diseases. The yeast-encapsulated active materialsshowedhigh stability and bioavailability due to the enhanced solubility and sustained releasing. In this study, different characteristics of prepared berberine loaded yeast cells (loading capacity, release kinetic order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 46 شماره
صفحات -
تاریخ انتشار 1999